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ABSTRACT 

The two-dimensional orthogonal function expansion technique was used to 

model discrete ocean bathymetric data as a function of cross-range and down- 

range, and to model discrete sound speed-data that is a function of depth and 

down-range. The technique was tested and validated via computer simulation. It 

was shown to have many positive features, but the approach is flawed by the set 

of generating functions that were selected. 

A reflection angle algorithm for arbitrary two-dimensional ocean bottom 

models was tested and validated, and was found to be accurate. Computer 

simulations of acoustic ray interaction with various two-dimensional ocean bottoms 

modeled with the orthogonal function expansion and using the reflection angle 

algorithm were also conducted. 

Accesion For 

NTIS    CRA&I           fef 
DTIC    TAB              O 
Unannounced           Q 
Justification  

By 
Distribution / 

Availability Codes 

Dist 

ßd 

Avail and/or 
Special 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION    1 

II. TWO-DIMENSIONAL ORTHOGONAL FUNCTION EXPANSIONS OF 
BATHYMETRIC DATA    5 

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS 
FUNCTIONS     5 
1. Definition of the Two-Dimensional Orthogonal Function Expansion       5 
2. Derivation of the Basis Functions from the Generating Functions    7 
3. The Generating Functions and the Minimum Mean-Squared Error 

Criterion    11 

B. COMPUTER SIMULATION RESULTS OF BATHYMETRIC FITS     13 
1. Exact Fit Test Cases  14 
2. Complicated Test Cases 34 
3. Summary   51 

III. THE BATHYMETRIC MODEL APPLIED TO RAY TRACING IN THE RRA 
ALGORITHM 53 

A. REFLECTION ANGLES OFF THE TWO-DIMENSIONAL OCEAN 
BOTTOM MODEL 53 

B. COMPUTER SIMULATION RESULTS 58 

IV. TWO-DIMENSIONAL ORTHOGONAL FUNCTION EXPANSIONS OF 
SOUND-SPEED DATA   75 

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS 
FUNCTIONS 75 
1. Definition of the Two-Dimensional Orthogonal Function Expansion   77 
2. The Basis Functions from the Generating Functions   77 

B. COMPUTER SIMULATION RESULTS OF SOUND SPEED FITS 79 

V. CONCLUSIONS AND RECOMMENDATIONS 97 

LIST OF REFERENCES 101 

INITIAL DISTRIBUTION LIST 103 

vu 



I. INTRODUCTION 

In the area of underwater acoustics, the development of an accurate, fast, and 

simple computer model to calculate ray paths and sound-pressure levels is an important 

first step for modeling and studying sound propagation in the ocean. The RRA (recursive 

ray acoustics) algorithm developed by Professor L. Ziomek [Ref. 1,2] provides these 

features. It requires only discrete input data of the bottom depth and the sound speed for 

the ocean being modeled, and uses orthogonal function expansions to fit the data in a 

minimum mean-squared error (MMSE) sense using orthogonal polynomials. However, 

until now, the concept of orthogonal function expansions had only been implemented and 

tested for one-dimensional data in the RRA algorithm, that is, bottom depth as a function 

of down-range and the speed of sound as a function of depth. 

The intent of this thesis is to show that two-dimensional orthogonal function 

expansions can be used to fit discrete data as a function of two independent variables, that 

is, bottom depth as a function of cross-range and down-range, and the speed of sound as a 

function of depth and down-range. This technique is implemented in the RRA algorithm 

to provide more realistic models of the ocean bottom and the speed of sound. 

The direction of propagation of a sound ray reflected off the ocean bottom is 

calculated based on the unit normal vector to the ocean bottom at the point of incidence. 

The unit normal vector is calculated based on the derivatives of the ocean bottom with 

respect to down-range and cross-range. 

For a one-dimensional model of ocean bottom depth (as a function of down- 

range) the angle of reflection is computed only from the derivative of bottom depth with 

respect to down-range. The one-dimensional model provides no cross-range information; 

the derivative of bottom depth with respect to cross-range is zero. A two-dimensional 

model of ocean bottom depth (as a function of cross-range and down-range) would 

provide derivatives of the ocean bottom with respect to both cross-range and down-range. 

A two-dimensional math model will provide components in the down-range and the 

cross-range direction, and the reflected ray will travel down-range and cross-range.  By 



modeling the ocean bottom with a two-dimensional orthogonal function expansion, an 

accurate model of the ocean bottom will be incorporated into the RRA algorithm. 

The sound-speed model currently implemented uses only one-dimensional data to 

produce a sound-speed vs. depth profile that is used in a zone (a particular area of the 

ocean). A two-dimensional orthogonal function expansion results in a model of the 

sound-speed as a function of depth and down-range that could be used to fit multiple 

sound-speed profiles (SSP) that are taken at different down-range locations. 

Chapter II discusses the two-dimensional orthogonal function expansion used to 

fit bathymetric data as a function of down-range and cross-range. The generating 

function that was chosen, and the algorithm used to orthogonalize the set of generating 

functions using the Gram-Schmidt procedure is detailed. Computer simulation results are 

shown that demonstrate the accuracy and the applicability of this method. The result is a 

smooth surface fit of the ocean bottom obtained from discrete data. 

A shortcoming of the generating functions chosen is that cross-range and down- 

range values have an equal effect on the estimated value of the ocean bottom depth. In 

some cases, ocean bottom depth may have little or no dependence on one of the 

parameters. Independent weighting of the parameters will correct this shortcoming for all 

planar ocean bottom cases. This thesis will demonstrate the need to weight parameters 

independently in these cases, and show some examples where weighting is applied. For 

more complicated ocean bottom geometries, a simple weighting scheme will not correct 

the problem created by the choice of generating functions. Alternative choices for the set 

of generating functions used in the orthogonal function expansion is discussed in Chapter 

V, and is offered as an area for future research. 

Chapter III presents the implementation of the ocean bottom models developed in 

Chapter II into the RRA Algorithm FORTRAN ray tracing program. The orthogonal 

function expansion technique allows accurate calculations of ray reflections off the ocean 

bottom. The algorithm used to calculate accurate reflection angles for sound rays will be 

presented. Using the unit normal vector to the ocean bottom at the point of incidence, the 



direction of propagation of a reflected ray is obtained using vector calculus. Computer 

simulation results showing incident and reflected rays propagated with the RRA 

algorithm are presented. 

Chapter IV discusses the application of the two-dimensional orthogonal function 

expansion technique to fit sound-speed data as a function of both depth and down-range. 

The procedure is the same to fit both bathymetric and sound-speed data. Computer 

simulation results are shown that demonstrate the smooth fit of the discrete data. The 

results show that one math model can fit more than one sound-speed profile (SSP) taken 

at different down range locations. 

Chapter V discusses the problems encountered with the two-dimensional 

orthogonal function expansion technique used to model bathymetric and sound-speed 

data, states conclusions as well as recommendations for future research. 





II. TWO-DIMENSIONAL ORTHOGONAL FUNCTION 
EXPANSIONS OF BATHYMETRIC DATA 

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS FUNCTIONS 

Ocean bathymetry data is commonly measured and stored as a set of discrete 

measurements of ocean bottom depth at distinct, sampled locations. Matrices of data 

have been generated by the U.S. Navy to chart ocean bottom depth, and provide bottom 

contour navigation. This type of data is ideal for developing a model of the ocean bottom 

that can be used in the RRA (Recursive Ray Acoustics) algorithm. In ray acoustics, the 

model of the ocean bottom is used to calculate ray reflections at the point of incidence to 

the ocean bottom. The model of the ocean bottom must provide a smooth fit to the 

discrete data, and it must be capable of providing first and second order derivatives of the 

ocean bottom at the point of incidence. The orthogonal function expansion technique 

provides these features, and it has been demonstrated as an effective method when ocean 

bottom depth is a function of one variable, that is, down-range [Ref. 2]. 

1. Definition of the Two-Dimensional Orthogonal Function Expansion 

The two-dimensional orthogonal function expansion used to fit a smooth surface 

to a rectangular matrix of ocean bathymetric data as a function of cross-range and down- 

range is given by 

where the coefficient 

K = (MV**).?«,, (**>**))> 
Mit Mbi 

= IS\^^K^'Z»)'   n = 0X-,Nb ,        (2.2) 



represents the inner product of the measured discrete ocean bathymetric data y^x^z^), 

for / = 1,2,..., M6 and j = 1,2,...,Mb, with the set of orthonormal basis functions 

(pb (x,z), n = 0,l,---,Nb , evaluated at the discrete cross-range(xv)and down-range{ztJ) 

values corresponding to the discrete ocean bathymetric data. The order of the expansion 

is represented by Nb . The discrete data must be entered in a matrix, where MK is the 

total number of cross-range rows and Mbi is the total number of down-range columns. 

It is important to note that although the data is entered in a matrix, the matrix is, in 

general, rectangular, not square, and the data is, in general, unevenly spaced in both the x 

and z directions. Figure 1 shows an example of unevenly spaced data entered in a 

rectangular matrix. Each data point of the matrix (i,j) has a cross-range (x9), down-range 

(zv), and depth yK (xv ,zy) value associated with it. 

(1,1)        i        (1,2) |        (1,3) |        (1,4) j 

I J        • ! j 
I      • j { •   [ 

--• 1 1 1 1- 

(2,1) J       (2,2) j        (23) |        (2,4) | 

(3,1) |        (3,2) |        (3,3) j        (3,4) | 

! •   ! ! • ! 
• i i t ; 

 i 1 4 U 

Figure 1. Discrete bathymetric data, unevenly spaced, entered in a rectangular matrix. 



2. Derivation of the Basis Functions from the Generating Functions 

The set of orthonormal basis functions <pbn (x,z), n = 0,1,...,Nb, were determined 

by using the Gram-Schmidt procedure [Ref. 3] on the set of generating functions 

f„(x,z) = (x + z)", n = 0,l,...,iVA. The choice of this particular set of generating 

functions will be discussed later. The general equation of the Gram-Schmidt 

Orthogonalization Procedure is given by 

,     ,     ,,     ,    (fn(x,z),<pbo(x,z)) 
(pb(x,z) = fn{x,z)-f—— —^(x,z)-... 

(fn(x,z),<pb   (x,z)\ 
-   / , "'        (v^, (*>*)>    « = 0,U,....    (2.3) 

\<Pb„_l(
x>z)><Pb„_Sx>z)) 

The Gram-Schmidt procedure to find pv<p^,and (p^ is shown in Equations (2.4) to 

(2.16). The development of the higher order basis functions, for n = 3,4,..., Nb, is not 

shown since the procedure to expand Equation (2.3) is similar to that demonstrated with 

the first three basis functions. 

The 0f/j-order basis function is given by 

^(x,z) = /0(x,z) = (x + z)° = l. (2.4) 

The isf-order basis function is given by 

q>^(x,z) = fx{x,z)-f—— —^<pb(x,z), (2.5) 



where the inner products on the right-hand side of Equation (2.5) are given by 

mbx "'bz 

(/, (X,Z), <ph (X,Z)) = 2 Z /l (X0 >ZV )^S, (XV >ZV ) ' 
,'=1 y=l 

;=1 >=1 

i=l 7=1 

and 

i=\ 7=1 

= ZZ1-I = M*,^' (2-7) 
M  7=1 

is the energy contained in ^ (x,z). Note that the ratio of inner products that appears on 

the right-hand side of Equation (2.5) will show up in later equations.   It needs to be 

evaluated during the computation of the Ist-order basis function and is saved as 

„,      (fi(x,z),^(x,z))     (/i (*,*),?*, (x,z)) 
IVl0 = -. r = . yi-o) 

Finally, the 7^-order basis function becomes 

q>u{x,z) = x + z-Ww. (2.9) 



Similarly, the 2nd-order basis function is given by [see Equation (2.3)] 

(/2 (*,*), l\(s,z)) 
<p^(x,z)=f2(x,z)-f -r^(*,2) 

(q>^(x,z),<p^(x,z)) 

(f2(x,z),<ph(x,zj) 
j——-*—Lq,  (XjZ) , (2.10) 

where the inner products in the numerators on the right-hand side of Equation (2.10) are 

given by 

and 

(/2 (x,z),<ph (x,z)) = £ £/2 (*ff >2!/ )?*, (** 'zi/)' 
1=1 7=1 

= EI(^+^)2 > (2-11) 
i=l y=l 

/=1 y=l 

= L2>* +^)3 -^oZZ(^+z*)2 •  <2-12> 
/=i 7=1 1=1 7=1 

The energy contained in^(x,z)is given by Equation (2.7) and the energy contained 



in <p^ (x,z) is given by 

£„„ = (?*, (x>z)> v* (x>z)}=E Z ^ (**■ 'zv K (x* 'z^' 
1=1 ;=l 

i=l y=l 

Equation (2.13) is evaluated by using Equation (2.9) for the 7sf-order basis function, 

q>u (x,z).  The ratios of inner products that appear on the right-hand side of Equation 

(2.10) are saved for use in later equations as 

(/2(x,*),^(x,*))     (/2(x,z),^(x,z)) 
W2Q=-, r =     , lA1^ 

(^(x,z),^(*,z)) ^ 

and 

Finally, the 2nd-oxder basis function is given by 

<ph(x,z) = (x + z)2 -W20-W2l[x + z-Wl0] . (2.16) 

As mentioned earlier, the equations for the higher-order basis functions, for 

« = 3,4,...,JVA, are found by expanding Equation (2.3) in the same manner. It is 

important to note from Equations (2.4) to (2.16) that all the input needed to determine the 

basis functions comes from the discrete data points of the ocean bathymetry.   This 
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technique is ideally suited for implementation by a computer program. Additionally, the 

order of the orthogonal function expansion, Nb , can be increased by simply computing 

the next higher order coefficient bn and orthonormal basis function <pb ; all previous 

coefficients and basis functions do not have to be recomputed. In fact, many of the 

computations needed for the lower order coefficients and basis functions can be saved 

and used in the computation of the higher order coefficients and basis functions. The 

choice of Nb will be discussed in the next section concerning the minimum mean- 

squared error (MMSE) criterion for the best fit of the data. 

Finally, the data for this technique do not have to be evenly spaced. The ability to 

use unevenly spaced data allows for data sets with slight perturbations in the down-range 

or cross-range values. Real data will contain randomness. For example, set and drift of a 

ship collecting bathymetric data could introduce such perturbations in down-range and 

cross-range of measured data, but there would be no effect on the estimated value of 

ocean depth. 

3. The Generating Functions and the Minimum Mean-Squared Error 
Criterion 
Theoretically, any finite set of functions may be transformed into a set of 

orthonormal basis functions by using the Gram-Schmidt procedure, and a MMSE fit to a 

finite set of data can be obtained using Equation (2.1) [Ref. 3]. Basis functions that are 

based on sinusoidal functions are frequently used in signal processing to model natural 

occurring phenomena with a finite Fourier series expansion. A previous effort to model 

the ocean bottom using a finite Spatial Fourier Series (SFS) expansion was attempted in 

1991 [Ref. 4]. The SFS technique encountered difficulty due to the oscillations that are 

inherent in using a finite set of sinusoids to fit the ocean bottom. Additionally, the 

estimation of the first and second order derivatives at the point of incidence of a ray 

reflecting off the ocean bottom proved to be inaccurate due to the oscillatory fit. The use 

of a set of generating functions with increasing powers of the independent variable, 
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fn(z) = z", n = 0,\,---,Nb, was used successfully for one-dimensional orthogonal 

function expansions of ocean bathymetric data [Ref. 2]. 

The choice of using increasing powers of the sum of the cross-range and down- 

range variables as the set of generating functions was used in this thesis research, that is, 

/„ (x,z) = (x + z)n, n = 0,1,..., Nb. The lower order functions, for n = 0,1, and 2, fit the 

most common trends in the ocean bathymetry without introducing oscillations. For 

n = 0, the orthogonal function expansion fits a constant depth ocean bottom. For n = 1, 

the orthogonal function expansion fits an up-sloping or down-sloping ocean bottom in 

both the x and z directions. For n = 2, the orthogonal function expansion fits a slope 

with increased curvature. The higher orders tend to fit ocean bottoms with many and 

various contour changes. In computer simulation, the highest order fit used is the 

designer's choice. Section B of Chapter II will present results with the highest order fit 

being 7/Ä-order, that is, Nb = 7. The choice of the highest order fit is a trade-off 

between exactly fitting data (interpolation) versus providing a smooth fit to the trend of 

the data. Higher order, or a higher value of Nb , will fit contour changes more exactly. 

That is, the estimated fit will more closely match the input data. A lower order fits the 

discrete data by smoothing through contour changes in the bathymetric data that could be 

due to a rough bottom or measurement error. Data is corrupted by measurement noise 

and by a lack of precision in the measurement equipment. Limiting the highest order to 

Nb = 7 provides a smooth fit when the number of data points is greater than eight points. 

If the discrete data is fit as accurately with Nb < 7 as with Nb = 7, then the use 

of the higher order terms is unnecessary. Lower order fits are used based on a minimum 

mean-squared error criterion [Ref. 2,3]. The order of the fit is determined by computing 

the mean-squared error ( MSE) for each order fit, Nb = 0,1,...,7, as follows: 

MSEyi=Eybm-EPb   , (2.17) 

12 



where 

(=1 j=\ 

is the energy contained in the measured bathymetric data, and 

Eh = (A (xe >ZV )»& (x* >zv)) = X Z I.?» (** »z* )l2 (2-19) 
i=l ;=1 

is the energy contained in the bathymetric estimate. The value of Nb  that produces the 

lowest MSE becomes the order of expansion used to reconstruct the bathymetric data. 

B. COMPUTER SIMULATION RESULTS OF BATHYMETRIC FITS 

The technique of orthogonal function expansion to model ocean bathymetry that 

was derived in Section A of Chapter II was implemented in the RRA Algorithm 

FORTRAN ray tracing program. The results of various test cases are presented 

graphically to demonstrate both the successes and the shortcomings of this method of 

ocean bathymetry modeling. The graphs, presented in Figures 2 to 23, show the discrete 

bathymetric data points as large black dots (•). The estimated fit to the discrete data 

computed by the orthogonal function expansion is presented as a mesh of lines to 

represent the two-dimensional, continuous surface. As can be seen from these figures, 

the surfaces, in general, do not pass through all of the data points. Instead, the curves fit 

the trend of the data. Computer simulation of this technique did reveal shortcomings. 

The test cases presented will show examples of the problems encountered, discuss the 

reasons for the problems, and suggest areas of future research to explore methods to 

correct these shortcomings. 
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Each plot contains a legend with the following information: 

(1) 'CASE:', a description of the test case 

(2) ' SIGMAYB:', the value of the standard deviation, (<Jn), of a randomly 

generated zero-mean gaussian noise added to each data point 

(3) the order of the fit, (Nb ), based on the minimum mean-squared error 

criterion 

(4) 'MSEO:' to 'MSE7:', the mean-squared error for Nb = 0,1,2,...,7, computed 

using Equation (2.17) 

The test cases are grouped in two categories. Oth-order and Ist-order fits are 

presented to show that exact fits are obtained in simple cases. The ability to handle 

unevenly spaced data is presented. Also, a problem with the choice of the generating 

function is discussed. Then, ocean bottoms with a more complicated or arbitrary shape 

are presented to demonstrate fitting the trend of the data. The shortcomings of the 

generating function that was chosen is discussed further. 

1. Exact Fit Test Cases 

Figures 2 and 3 demonstrate the fit of the most basic test case, a flat ocean bottom 

with a constant depth. The exact equation used to generate the 8x10 rectangular 

matrices of data for Figures 2 and 3 is given by 

yb(x,z) = l300. (2.20) 

Figure 2 shows the discrete data points entered at evenly spaced cross-range and 

down-range locations. Figure 3 shows that the data may be entered at unevenly spaced 

coordinates without affecting the fit. In both cases the fit is an exact Oth-order fit with the 

orthogonal function expansion returning a value of 1300 meters for any combination of 

cross range and down range. The Oth-order mean-squared error, MSEO, is 9.09 x 10~7 

and not exactly equal to zero due to round-off error in the computer simulation which 

14 



HRRRN BOTTOM BRTHYMETRY 

0.01 

337.5-j 

g     675.0 

10J2-5' 

CASE:   8X10 FLAT OCEAN BOTTOM 
SIGMRYB:   0.0M      OTH-ORDER MUSE SURFACE FIT 
MSEO:   9.090*10"7  MSE2:   9.090*10~7  MSE4:   9.090K10~7  MSE6:   9.090x10 
MSE1:   9.090K10"7  MSE3:   9.090*10~7  MSE5:   9.090*10~7  MSE7:   9.090*10 

Figure 2.  Flat ocean bottom with evenly spaced data. 
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OCERN BOTTOM BATHYMETRY 

r 

^ 

CASE:   8X10 FLAT BOTTOM IN X FIND Z, UNEVENLY SPACED DATA 
SIGMAYB:   O.OM      OTH-ORDER MMSE SURFACE FIT 
MSEO:   9.090*10"7  MSE2:   9.090xl0~7  MSE4:   9.090xl0~7  MSE6:   9.090x10 
MSE1:   9.090xl0"7  MSE3:   9.09QxlO~7  MSE5:   9.090xl0"7  MSE7:   9.090x10 

Figure 3.   Flat ocean bottom with unevenly spaced data. 
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uses double precision numbers.   The values of the higher order mean-squared errors, 

MSE1 to MSE7, are equal to MSEO. This shows that no additional accuracy is obtained 

for Nb>0. 

Figures 4, 5, and 6 demonstrate exact /border fits. The exact equation used to 

generate the 7 x 8 rectangular matrices of data for Figures 4 and 5 is given by 

yb(x,z) = 1500--]-(x + z), (2.21) 
lou 

which represents a planar ocean bottom that slopes upward at the same rate with respect 

to cross-range and down-range. The exact equation used to generate the 8x8 

rectangular matrix of data for Figure 6 is given by 

yb{x,z) = l350 + ±(x + z), (2.22) 

which represents a planar ocean bottom that slopes downward at the same rate with 

respect to cross-range and down-range. In Figures 4 and 6, the orthogonal function 

expansion fits the data with an exact first order fit. For Nb = 1, the orthogonal function 

expansion is given by 

yb(x,z) = b0+bl(x + z-Ww) = (b0-biWw) + b1(x + z), (2.23) 

which exactly matches the form of Equations (2.21) and (2.22). Note that the choice of 

generating functions used for this technique, fn(x,z) = (x + z)n, for « = 0,1,...,7, will 

result in an orthogonal function expansion based upon the sum of x and z. Since x and z 

are multiplied by the constant 6,, the same slope with respect to cross range and down 

range will result. 

17 



OCERN BOTTOM BRTHYMETRY 

0.0- 

387.' 

5 

CASE:   7X8 UP-SLOPE  IN BOTH X AND Z DIRECTIONS 
SIGMflYB:   0.0 M      IST-ORDER MMSE SURFACE FIT 
MSEO:   1.295x10s   MSE2:   2.645xl0"7  MSE4:   2.645xl0"7  MSE6:   2.645x10 
MSE1:   2.645xl0"7  MSE3:   2.645xlO"7  MSE5:   2.645xl0"7  MSE7:   2.645x10" 

Figure 4.   Planar ocean bottom sloping upward in both the 
x and z directions with evenly spaced data. 
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OORON BOTTOM BRTHYMETRY 

X1 

CASE:   7X8 UP-SLOPE  IN BOTH X AND Z, UNEVENLY SPACED DATA 
SIGMflYB:   O.OM      7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.237*10B   MSE2:   4.415*10"2  MSE4:   4.334*10"2  MSE6:   4.294x10 
MSE1:   4.805*10"'  MSE3:   4.341xl0"2  MSE5:   4.303xl0'2  MSE7:   4.238x10 

Figure 5.   Planar ocean bottom sloping upward in both the 
x and z directions with unevenly spaced data. 
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Figure 6.   Planar ocean bottom sloping downward in both the 
x and z directions with evenly spaced data. 
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Figure 5 demonstrates that the data may be unevenly spaced. Note that the fit 

indicated in Figure 5 is 7th-order and not Ist-order. Equation (2.21) was used to generate 

the discrete data entered for the computer simulation shown in Figure 5, however, only 

five significant digits were entered. Round-off error results from having only five 

significant digits in the discrete bathymetric data. For the orthogonal function expansion, 

the double-precision computations that evaluate the best fit of the data based on the 

mean-squared error criterion found that the 7^-order fit was slightly more accurate. The 

lst-order mean-squared error is of the same order of magnitude as the 7th-ordsx mean- 

squared error. The orthogonal function expansion coefficients, 

b0 = 8.82963 x 103 , bx = -1.11226 x 103, 

b2 = -624349 x 10"2 , b3 = -2.73240 x 10~2 , 

b4 = 8.38137 x 10~3 , b$ = -1.74958 x 10~2 , 

b6 = -9.30174 x 10~3 , by = 2.38320 x 10-2 , 

show that the fit is essentially lst-order. The 0th- and lst-order coefficients, b0 and bx, 

are five orders of magnitude larger than the higher order coefficients, b2,bi,...,b7. In this 

test case, the higher order terms of the orthogonal function expansion will affect only the 

fourth or fifth significant digit of the ocean bathymetry evaluated using the orthogonal 

function expansion. 

Figures 7, 8, and 9 show the results of fitting discrete bathymetric data that shoals, 

or has an upward slope, in only the down-range (z) direction. The data is constant with 

respect to variations in the cross-range (x) direction. The exact equation used to generate 

the discrete data for Figures 7,8, and 9 is given by 

yb(x,z) = 550-^2. (2.24) 
o 
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Figure 7 shows the results of the orthogonal function expansion as detailed in 

Section A of Chapter II. The fit that is presented in Figure 7 is the best fit to the data 

when using the generating function given in Section A of Chapter II. The corner of the 

surface fit at the maximum cross-range and minimum down-range location (x = 1.250km, 

z = 0.0 km) is above the discrete bathymetric data points; the corner of the surface fit at 

the minimum cross-range and maximum down-range location (x = 0.0km, z = 1.050km) 

is below the discrete bathymetric data points. The fitted surface approximates a Ist-ovder 

planar ocean bottom model that slopes upward equally in both the x and z directions. 

Therefore, the fitted plane is above half of the discrete bathymetric data points in the 

lower half of Figure 7, and it is below half of the discrete bathymetric data points in the 

upper half of Figure 7. The best fit is limited in its accuracy due to the fact that x and z 

are summed in every term of the orthogonal function expansion. The orthogonal function 

expansion does not treat the x and z dependence separately, and this is the major 

shortcoming of this technique. 

In order to correct this shortcoming, an independent weighting with respect to x 

and an independent weighting with respect to z need to be added to the orthogonal 

function expansion. With the addition of weighting factors to Equation (2.1), the 

orthogonal function expansion becomes 

yb{x,z) ^bn(Pbn{Wxx,Wzz), (2.25) 
«=o 

where Wx and Wz are weighting factors to introduce independence in x and in z. For the 

exact /s/-order cases presented in Figures 7 through 15, the weighting factors are 

constants in order to independently match the rate of change of the ocean bottom depth 

with respect to x and to z. In the following section, for more complicated ocean bottom 

geometries,    the weighting factors would need to be functions of the independent 
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OCERN BOTTOM BRTHYMETRY 

X(Kfl) 

CRSE:   6X8 UP-SLOPE IN Z DIRECTION ONLY, NO WEIGHTING 
SIGMRYB:   0.0M      7TH-0RDER MMSE SURPflCE PIT 
MSEO:   1.575x10s   MSE2:   9.557x10*   MSE4:   9.452*10*   MSE6:   9.419x10* 
MSE1:   9.557*10*   MSE3:   9.452xl04   MSE5:   9.419*10*   MSE7:   9.384x10* 

Figure 7.   Planar ocean bottom sloping upward in the z direction only with no variation 
in the x direction, modeled without weighting x and z separately, with evenly spaced data. 
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variables. The development of an algorithm to determine the weighting factors, Wx and 

W, from the discrete data is not presented as part of this thesis and is left as an area of 

future research. The choices of Wx and W. in Figures 7 through 15 are based on a priori 

knowledge of the signs (positive or negative) of the slopes of the data with respect to 

cross-range (x) and down-range (z). 

Figure 8 presents the same test case presented in Figure 7, except that weighting 

factors, Wx and W:, were added as shown in Equation (2.25) with Wx = 0 and W.=\. 

The result is an exact /sf-order fit. Figure 9 presents the same test case with the discrete 

bathymetric data entered at unevenly spaced locations. As discussed concerning Figure 5, 

the fit determined by the orthogonal function expansion is 7/A-order due to using only 

five significant digits for the discrete bathymetric data. The overall fit is 7sf-order; the 

higher order terms of the orthogonal function expansion only affect the lower significant 

digits of the estimated value of the ocean bottom. 

Figures 10 and 11 show the fit to discrete bathymetric data that has a downward 

slope in only the down-range (z) direction. The data is constant with respect to variations 

in the cross-range (x) direction. The exact equation used to generate the discrete data for 

Figures 10 and 11 is given by 

yb(x,z) = 1700+ ±z. (2.26) 

Figure 10 shows the result of the orthogonal function expansion as detailed in Section A 

of Chapter II. Figure 11 presents the same test case presented in Figure 10, except that 

weighting factors, Wx and Wz, were added as shown in Equation (2.25) with Wx = 0 and 

Wz=\. 

Figures 12 and 13 show the results of fitting discrete bathymetric data that has 

opposite slopes with respect to cross-range and down-range, that is, an upward slope in 

the down-range (z) direction and a downward slope in the cross-range (x) direction. The 

24 



OCERN BOTTOM BRTHYMCTRY 

?   300-°- 

CflSE:   6X8 UP-SLOPE  IN Z DIRECTION ONLY, WITH WEIGHTING 
SIGMRYB:   O.OM      IST-ORDER MMSE SURFACE FIT 
MSEO:   1.575x10s   MSE2:   1.094»« 10"*  MSE4:   1.094x10"* MSE6:   1.094x10 
MSE1:   1.094M10"6  MSE3:   1.094*10"*  MSE5:   1.094»« 10"*  M5E7:   1.094x10 

Figure 8.  Planar ocean bottom sloping upward in the z direction only with no variation 
in the x direction, using Wx = 0 and W. = 1, with evenly spaced data. 
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0.0-1 

ISO." 

OCEAN BOTTOM BRTHYMETRY 

CASE:   6X8 UP-SLOPE  IN Z ONLY, WITH UNEVENLY SPACED DATA 
SIGMflYB:   0.0 M      7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.523*10*   MSE2:   3.621*10"2  MSE4:   3.522X10-2  MSE6:   2.803*10 
MSE1:   3.740*10~2  MSE3:   3.523*10~2  MSE5:   3.149*10~2  MSE7:   2.803x10 

Figure 9.   Planar ocean bottom sloping upward in the z direction only with no variation 
in the x direction, using Wx = 0 and W. = 1, with unevenly spaced data. 
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Figure 10.   Planar ocean bottom sloping downward in the z direction only with no 
variation in the x direction, modeled without weighting x and z separately, with evenly 

spaced data. 
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Figure 11.   Planar ocean bottom sloping downward in the z direction only with no 
variation in the x direction, using Wx=0andW.=l, with evenly spaced data. 
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slopes are equal in magnitude, but opposite in sign. The exact equation used to generate 

the discrete data for Figures 12 and 13 is given by 

yb(x,z) = 1500+ -^-(x-z).     . (2.27) 

Figure 12 shows the result of using the orthogonal function expansion as detailed in 

Section A of Chapter II. Figure 13 presents the same test case presented in Figure 12, 

except that weighting factors, Wx and W2, were added as shown in Equation (2.25) with 

Wx = -1 and Wz = 1. 

Figures 14 and 15 show the results of fitting a rectangular matrix of 

discrete bathymetric data that has opposite slopes with respect to cross-range and down- 

range, that is, a downward slope in the down-range (z) direction and an upward slope in 

the cross-range (x) direction. The slopes are equal in magnitude, but opposite in sign. 

The exact equation used to generate the discrete bathymetric data for Figures 14 and 15 is 

given by 

yb(x,z) = 1300-±(x-z). (2.28) 

Figure 14 shows the result of using the orthogonal function expansion as detailed in 

Section A of Chapter II. Figure 15 presents the same test case presented in Figure 14, 

except that weighting factors, Wx and Wz, were added as shown in Equation (2.25) with 

Wx=-landWz=l. 

Figures 2 through 15 have shown that the method of orthogonal function 

expansion accurately models discrete bathymetric data in the most basic test cases of 

planar ocean bottoms. From discrete bathymetric data, a continuous model is produced. 

The discrete bathymetric data does not need to be evenly spaced. Errors in the discrete 
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OCEAN BOTTOM BATHYMETRY 

CRSE:   7X8 DOWN-SLOPE  IN X,  UP-SLOPE  IN Z, NO WEIGHTING 
SIGMflYB:   O.OM      7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.295*10°   MSE2:   1.271*10B   MSE4:   1.267*10     MSE6:   1.265*10 
MSE1:   1.271*10*   MSE3:   1.267*10*   MSE5:   1.265*10°   MSE7:   1.263x10 

Figure 12.   Planar ocean bottom sloping upward in the z direction and downward in the 
x direction, modeled without weighting x and z separately, with evenly spaced data. 
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OCEAN BOTTOM BRTHYMETRY 

CASE:   7X8 DOWN-SLOPE'IN X,  UP-SLOPE IN Z,  WITH WEIGHTING 
SIGKRYB:   O.OM       IST-ORDER MMSE SURFACE FIT 
MSEO:   1.295x10"   MSE2:   3.353*10"7  MSE4:   3.353*10"7  MSE6:   3.353*10 
MSEl:   3.353*10"'  MSE3:   3.353*10"7  MSE5:   3.353*10"7  MSE7:   3.353*10 

Figure 13.   Planar ocean bottom sloping upward in the z direction and downward in the 
x direction, using Wx = -1 and W. = l, with evenly spaced data. 
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Figure 14.   Planar ocean bottom sloping downward in the z direction and upward in the 
x direction, modeled without weighting x and z separately, with evenly spaced data. 
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Figure 15.   Planar ocean bottom sloping downward in the z direction and upward in the 
x direction, using Wx = -1 and W. = 1, with evenly spaced data. 
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bathymetric data, such as round-off error, do not affect the dominant results of a Ist-order 

fit. The only major shortcoming is the need of an algorithm to weight x and z 

independently. 

2. Complicated Test Cases 

Figures 16(a), 16(b), and 17 show test cases that were presented in the previous 

section, except that now the discrete ocean bathymetric data has been corrupted by a zero- 

mean random gaussian noise with standard deviation, <jyi, that has been added to each 

point. Note that the plots refer to the value of o>n as ' SIGMAYB:' in the legend of the 

plot. Only the value of the depth of each point has been corrupted. The cross-range and 

down-range values have been left at evenly spaced coordinates so that the (x,z) coordinate 

of each discrete data point corresponds to the intersection of the lines in the mesh of the 

estimated ocean bottom. 

Figures 16(a) and 16(b) show the flat ocean bottom that was presented in Figure 

2. Equation (2.20) has been modified as follows: 

yb(x,z) = 1300 + ayN(0,l), (2.29) 

where iV(0,l) represents a zero-mean gaussian (normal) random variable with a unit 

standard deviation obtained from a gaussian random number generator. For Figure 16(a), 

a    is 13 meters, a standard deviation that is 1% of the value of the uncorrupted ocean 
yb 

bottom data. For Figure 16(b), ayt is 130 meters, a standard deviation that is 10% of the 

value of the uncorrupted ocean bottom data. In both cases, the overall trend of the 

discrete bathymetric data is fit by the orthogonal function expansion. Note in Figures 

16(a) and 16(b) that the 7th-order mean-squared error and the Oth-order mean-squared 

error are of the same order of magnitude. Although a 7th-order fit is produced, the Oth- 

order, flat ocean bottom, predominates. 
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nnr.RN BOTTOM BRTHYMETRY 

CASE:   8X10 FLAT BOTTOM WITH  17. DEVIATION  IN DEPTHS 
SIGMAYB:   13.OM    7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.128*10*   MSE2:   1.068*10*   MSE4:   1.028*10*   MSE6:   1.025*10 
MSE1:   1.100*10*   MSE3:   1.068*10*   MSE5:   1.028K104   MSE7:   1.009x10 

Figure 16(a).  Flat ocean bottom with evenly spaced data corrupted by a zero-mean 
random gaussian noise added to the depth of each data point. 
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OCERN RnTTClM BRTHYMETRY 

CASE:   8X10 FLAT BOTTOM WITH 10Z DEVIRTION IN DEPTHS 
SIGMflYB:   130.OM 7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.128xl0B   MSE2:   1.068x10*   MSE4:   1.028*10"   MSE6:   1.025x10 
MSE1:   1.100x10s   MSE3:   1.068x10s   MSE5:   1.028*10°   MSE7:   1.009x10 

Figure 16(b).   Flat ocean bottom with evenly spaced data corrupted by a zero-mean 
random gaussian noise added to the depth of each data point. 
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Figure 17 shows the shoaling ocean bottom presented in Figure 8 with Equation 

(2.24) modified to 

yh(x,z) = 1350-^z + <rytN(P,l), (2.30) 

where ayb = 20 meters.  Again, the orthogonal function expansion fits the trend of the 

discrete bathymetric data. The values of the mean-squared errors in the legend of Figure 

17 indicate that a lst-otder fit dominates, demonstrating that the orthogonal function 

expansion smoothes through noise in the discrete bathymetric data. 

More complicated ocean bottom geometries are presented in Figures 18 through 

23. The models presented in each case continue to fit the trend of the discrete 

bathymetric data and provide a smooth, continuous model of the ocean bathymetry from 

discrete data. However, the poor performance illustrated in Figure 23 demonstrates 

serious shortcomings with the two-dimensional orthogonal function expansion based on 

the current choice of generating functions. 

Figure 18 shows a shoaling ocean bottom with a non-constant slope that increases 

as x and z increase. The exact equation used to generate the 5 x 6 rectangular matrix of 

discrete data for this test case is given by 

^(x,2) = 2000-3(x + z)2. (2.31) 

Equation (2.31) is of the same form as the orthogonal function expansion with Nb=2. 

The mean-squared errors shown in the legend of Figure 18 show that the resulting fit is 

predominantly a 2nd-oxdet fit. The small value of the 2nd-ot6sx mean-squared error 

shows close agreement between the discrete bathymetric data and the 2m/-order estimated 

fit. Again, the algorithm computes higher order terms, but these terms have little effect 

on the overall fit. 
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nr.RRN BOTTOM BRTHYMETRY 

7* 

CASE:   6X8 UP-SLOPE  IN Z DIRECTION ONLY, WITH WEIGHTING 
SIGMflYB:   20.OM    7TH-0RDER MMSE SURFACE FIT 
MSEO:   5.955x10s    MSE2:   1.629K104    MSE4:   1.445x10     MSE6:   1.344x10 
MSEl:   1.683x10*   MSE3:   1.476xl04   MSE5:   1.440xlQ4   MSE7:   1.331x10 

Figure 17.   Planar ocean bottom sloping upward in the z direction only with no variation 
in the x direction, using Wx = 0 and W. = 1, with evenly spaced data corrupted by a zero- 

mean random gaussian noise added to the depth of each data point. 
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OCERN ROTTOM BRTHYMETRY 

CRSE:   5X6 QURDRRTIC UPWARD SLOPING OCEAN BOTTOM 
SIGMRYB:   O.OM      7TH-0RDER MMSE SURFACE FIT 
MSEO:   1.022x10s   MSE2:   1.803xl0"2  MSE4:   1.789xl0~2  MSE6:   1.754x10 
MSE1:   7.730*104   MSE3:   1.789xl0~2  MSE5:   1.754xl0~2  MSE7:   1.720x10" 

Figure 18.   Shoaling ocean bottom in both the x and z directions 
with evenly spaced data. 
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Figures 19 and 20 show a rolling or oscillating ocean bottom. The exact equation 

used to generate the data for Figure 19 is given by 

yb(x,z) = 1500 -180O + z) + 30(x + z)2-1.3O + z)3, (2.32) 

and 

yb(x,z) = 1500-lS0(x + z) + 30(x + z)2-13(x + z)3+or yiN(0,Y), (2.33) 

is used to generate the data for Figure 20. In Equation (2.33), a standard deviation of 

<yy = 40 meters is used to add zero-mean random gaussian noise for the test case shown 

in Figure 20. Equations (2.32) and (2.33) are of the same form as the orthogonal function 

expansion with Nb = 3. The mean-squared errors shown in the legend of Figures 19 and 

20 show that the resulting fits are predominantly 3rd-order. The small value of the 3rd- 

order mean-squared error shows close agreement between the bathymetric data and the 

3rd-ox6sx estimated fit. Figure 20 demonstrates the ability of the orthogonal function 

expansion to fit the trend of discrete bathymetric data in the presence of noise, even for 

complex ocean bottom geometries. 

Figures 21(a) and 21(b) present results from the same test case, but shown 

graphically from two different points of view. The test case presented shows a flat ocean 

bottom with a gaussian shaped mound centered at the origin. The exact equation used to 

generate the 8x10 rectangular matrix of data is given by 

yb(x,z) = cx-c2-fL^e ^e^. (2.34) 
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nnRRN BOTTOM BRTHYMETRY 

o.oi 

387 ,5- 

£     775-0 

CASE:   5X6 OSCILLATING OCEAN BOTTOM 
SIGMflYB:   0.0 M      7TH-0RDER MMSE SURFACE FIT 
MSEO:   2.831x10s   MSE2:   2.655x10s   MSE4: 1.104xl0'2  MSE6:   1.062x10 
MSE1:   2.659x10s   MSE3:   1.169xl0~2  MSE5: 1.076xl0~2  MSE7:   1.061x10 

Figure 19.  Rolling or oscillating ocean bottom with evenly spaced data. 
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HRRRN ROTTOM BRTHYMETRY 

£ —* 
y 

CASE: 5X6 OSCILLATING OCEAN BOTTOM 
SIGMflYB: 40.0M 7TH-0RDER MMSE SURFACE FIT 
hSEO: 2.880x10s MSE2: 2.683x10s MSE4: 4.883x10 
MSE1: 2.683x10s MSE3: 4.889x10* MSE5: 4.749x10 

MSE6: 
MSE7: 

4.649x10* 
3.831x10* 

Figure 20.   Rolling or oscillating ocean bottom with evenly spaced data corrupted by a 
zero-mean random gaussian noise added to the depth of each data point. 
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With the constants set to c, = 1300, c2 = 105, and a = 4, Equation (2.34) becomes 

vi(x,z) = 1300-994.72e   n  . (2.35) 

Equation (2.35) is modified by adding a zero-mean random gaussian noise with a   = 50 

meters, for the test case presented in Figures 22(a) and 22(b). 

Figures 21(a) and 21(b) present a test case that does not match the form of 

Equation (2.1) for the orthogonal function expansion. Although the orthogonal function 

expansion does not exactly fit the data, the model fits the trend of the data. The gaussian 

function given in Equation (2.34) is centered at the origin. Therefore, the orthogonal 

function expansion, which is derived from the generating functions, f„(x,z) = (x + z)", 

for n = 0,1,... ,7, can follow the data as it rolls away from the origin. In Figures 22(a) and 

22(b), the addition of randomness to the data creates a more realistic test case of a 

downward sloping, complex ocean bottom. The model smoothly fits through the discrete 

bathymetric data with some data points above and some data below the fit. 

Figures 23(a) and 23(b) demonstrate the major shortcoming of the algorithm 

being tested. This test case presents a gaussian shaped ocean bottom with the peak of the 

gaussian function centered within the rectangular matrix of data at x = 5 km, z = 5 km. 

The exact equation used to generate the 8x10 rectangular matrix of discrete bathymetric 

data is given by 

1 (*-*>        (2-5) 

yb{x,z) = cx-c2-j=-e  ** e  ** . (2.36) 
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OCEAN BOTTOM BRTHYMETRY 

o.oi 

CASE:   8X10 FLAT BOTTOM WITH fl GAUSSIAN MOUND 
SIGMAYB:   0.0M      7TH-0RDER MMSE SURFACE FIT 
MSEO:   5.440x10s   MSE2:   3.245x10s   MSE4 =   2.428x10s   MSE6:   2.131x10 
MSE1:   1.658x10s   MSE3:   2.819x10s   MSE5:   2.147x10s   MSE7 =   2.128x10 

Figure 21(a).   Downward sloping ocean bottom with a gaussian shape in both 
the x and z directions with evenly spaced data. 
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Figure 21 (b).   Downward sloping ocean bottom with a gaussian shape in both 
the x and z directions with evenly spaced data. 
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OCERN BOTTOM BRTHYMETRY 

CASE: 8X10 FLAT BOTTOH WITH fl GRUSSIRN MOUND 
SIGMRYB: 50.0M 7TH-0RDER MMSE SURFACE FIT 
MSEO: 5.640x10s MSE2: 4.226x10s MSE4: 3.660x10 
MSE1: 1.602x10s MSE3: 3.806x10s MSE5: 3.399x10 

MSE6: 
MSE7: 

3.395x10s 

3.353x10s 

Figure 22(a).   Downward sloping ocean bottom with a gaussian shape in both the x and z 
directions with evenly spaced data corrupted by a zero-mean random gaussian noise 

added to the depth of each data point. 
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Figure 22(b).  Downward sloping ocean bottom with a gaussian shape in both the * and 
z directions with evenly spaced data corrupted by a zero-mean random gaussian noise 

added to the depth of each data point. 
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OCERN BOTTOM BRTHYMETRY 

o.o -i 

7* 

CASE:   8X10 GAUSSIAN SHAPED OCEAN BOTTOM 
SIGMAYB:   O.OM      7TH-0RDER MMSE SURFACE FIT 
MSEO:   5.350*10*   MSE2:   3.442*10*   MSE4:   3.254*10°   MSE6:   3.243*10 
MSE1:   4.359*10*   MSE3:   3.255*10*   MSE5:   3.251*10*   MSE7:   3.243*10 

Figure 23(a).  Gaussian shaped ocean bottom with the peak of the gaussian 
function at x = 5 km, z = 5 km with evenly spaced data. 
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Figure 23(b).   Gaussian shaped ocean bottom with the peak of the gaussian 
function at x = 5 km, z = 5 km with evenly spaced data. 
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With the constants set to c{ = 1300, c2 = 105, and a = 4, Equation (2.36) becomes 

[(*-S)2+(z-5)2] 

^(x,z) = 1300-994.72e        32       . (2.37) 

The fit produced by the orthogonal function expansion in Figures 23(a) and 23(b) 

smoothes through the peak of the gaussian shape and provides a poor fit to the discrete 

data. This shortcoming may be due to two reasons. First, if the orthogonal function 

expansion was computed to a higher order using Nb>l, then the surface fit would more 

closely match the curvature of the gaussian shape of the discrete data. The maximum 

value of Nb is a designer's choice. The chosen value is a trade-off between exactly 

fitting rough or rapidly varying ocean bottoms versus smoothing through some of the 

roughness or rapid changes. A higher value of Nb may be more appropriate if this 

technique is used to model rough or rapidly varying ocean bottoms. Second, the set of 

generating functions used to derive the equations for the two-dimensional orthogonal 

function expansion was selected due to the success of the set of generating functions used 

in the one-dimensional orthogonal function expansion presented in [Ref. 2]. The set of 

generating functions used in this thesis research may not have been the best choice. 

As can be seen in Figures 16 through 23, the surface fits have a constant value for 

the estimated ocean bottom depth across lines of contour given by 

x + z = C, (2.38) 

where C is a positive constant. The set of generating functions, f„(x,z) = (x + z)", for 

n = 0,1,... ,7, result in the same estimated depth being computed for values of x and z that 

satisfy Equation (2.38). Therefore, the surface fits have no curvature along these 

contours. This effect can be seen in both Figures 21(a) and 23(a). The estimated surface 

fits fail to roll off in two comers, the corner given by the maximum cross-range and 
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minimum down-range location, and the corner given by the minimum cross-range and 

maximum down-range location. This shortcoming is not as noticeable in Figure 21(a) 

since the discrete data has much less curvature across these contours. In Figure 23(a), 

this shortcoming results in an unacceptable fit of the discrete bathymetric data. 

Correcting this shortcoming is offered as an area of future research and possible 

alternatives will be discussed in Chapter V. 

3. Summary 

The method of orthogonal function expansion to fit two-dimensional, discrete 

ocean bathymetric data performs well, but more research is needed to fit all arbitrarily 

shaped ocean bottom geometries. The orthogonal function expansion has many positive 

features. It needs only discrete bathymetric data that may be unevenly spaced. It is 

unaffected by noise in the discrete bathymetric data, and it smoothes through noisy or 

rapidly varying data to provide a smooth, continuous model of the ocean bottom. Chapter 

HI will further demonstrate the utility of this method of ocean bottom modeling by using 

this technique in the RRA Algorithm to produce accurate three-dimensional ray traces 

with rays reflecting off of arbitrarily shaped two-dimensional ocean bottoms. 
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III. THE BATHYMETRIC MODEL APPLIED TO 
RAY TRACING IN THE RRA ALGORITHM 

A. REFLECTION ANGLES OFF THE TWO-DIMENSIONAL OCEAN BOTTOM 
MODEL 

In a ray acoustics ray tracing program, an important feature of a model of the 

ocean bathymetry is that it facilitates accurate ray reflection calculations. The ocean 

bottom model must provide accurate first order derivatives in order to calculate the 

propagation vector of a sound ray reflecting off the ocean bottom. Additionally, in order 

for the ray tracing program to allow for three-dimensional ray propagation, a two- 

dimensional ocean bottom model is needed which can be used to calculate, or accurately 

estimate, first order partial derivatives of the ocean bottom depth with respect to both 

cross-range and down-range at the point of incidence of a propagating ray. Given these 

partial derivatives, the reflected ray can be calculated using vector analysis. 

The partial derivatives of the ocean bottom depth with respect to cross-range and 

down-range can be accurately estimated with a central differencing algorithm that was 

originally presented in [Ref. 7], and was tested for accuracy in estimating reflection 

angles off one-dimensional ocean bottom models in [Ref. 4]. The reflection angles 

calculated in [Ref. 4] were found to be accurate, and had an average percentage error of 

less than 0.1%. The equation for estimating the partial derivative of the ocean bottom 

depth with respect to down-range is given by 

r _ dyb{x,z) _ -yb(x,z + 2h) + Syb(x,z + h)-Syb(x,z-h) + yb(x,z-2h) 
Jz~     dz     " 12Ä '   (    ' 

and the equation for estimating the partial derivative of the ocean bottom depth with 
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respect to cross-range is given by 

= dyb{x,z) = -yb(x + 2h,z) + Syb(x + k,z)-$yb(x-h,z) + yb(x-2h,z) 
Jx      dx m 

where h is some arbitrarily small number, with value nominally between 0.01 and 1. For 

the computer simulation test cases performed in this thesis research, a value of h = 0.1 

was used. 

Although the partial derivatives with respect to cross-range and down-range could 

be found by algebraically differentiating the equations for the orthogonal function 

expansion, the central differencing algorithm has been maintained as the method for 

estimating the partial derivatives. This technique of estimating the partial derivatives 

given any mathematical model of the ocean bottom has allowed the mathematical 

modeling technique to be changed and improved during research without having to 

change the method of calculating the partial derivatives. 

The problem geometry is illustrated in Figure 24. The angles of propagation 

shown in Figure 24(a) are taken from [Ref.l], where the direction of the unit vector along 

a ray path, h, is determined by the angles <f> and ß. The angle ß is measured from the 

positive Y axis to the unit vector, and the angle <f> is measured from the positive X axis to 

the projection of the unit vector into the XZ plane. The unit vector h can be expressed as 

n = ux + vy + wz , (3.3) 

where 

« = sin/?cos^, (3.4) 

v = COSytf, (3.5) 
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and 

w = sin/?sin^, (3.6) 

are the dimensionless direction cosines with respect to the X, Y, and Z axes. 

Figures 24(b) and 24(c) illustrate a sound ray reflecting off the ocean bottom. 

Figure 24(b) shows the tangent plane to the ocean bottom at the point of incidence of a 

sound ray. The incident sound ray is denoted by the unit vector n,, and the reflected 

sound ray is denoted by the unit vector nr. The tangent plane is defined by the unit 

normal vector to the ocean bottom, denoted nb. Figure 24(c) presents a two-dimensional 

view of the three unit vectors shown in Figure 24(b). 

With the partial derivatives of the ocean bottom depth with respect to cross-range 

and down-range at the point of incidence of a sound ray available, the normal vector to 

the ocean bottom, denoted Nb , can be calculated as follows [Ref. 8]: 

Nb=-fxx + y-fzz. (3.7) 

The unit normal to the ocean bottom is given by 

«» = ■ 

tf» 
X + 

Nb 
y-TTh* . (3-8) 

N»\ 

where the magnitude of the normal vector to the ocean bottom is 

The unit vector along a sound ray at the point of incidence on the ocean bottom is denoted 

N> 
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(a) 

n. 

V A 
► m 

(b) (c) 

Figure 24. (a) The unit vector along a ray path, (b) Three-dimensional view of a sound 
ray reflected off the ocean bottom in terms of the unit normal to the ocean bottom at the 

point of incidence, (c) Two-dimensional view of the vectors shown in (b). 
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by 

ni = UjX + vty + wtz. (3.10) 

The unit vector of the reflected ray at the point of incidence, nr, and the unit 

vector «,, have the same component perpendicular to the unit vector normal to the ocean 

bottom, nb, but the parallel components are opposite. To obtain nr from ht, this parallel 

component, denoted Nt, must be subtracted twice [Ref.6]. See Figures 24(b) and 24(c). 

The equation for nr is given by 

hr =nt-2N,= n, - 2(n, • nb )nb, (3.11) 

where the inner product, (/?, • nb), is a scalar denoted NINB. Substituting Equations (3.8) 

and (3.10) into Equation (3.11) yields 

nr = urx + vry + wrz = ufx + v(y + w(i - 2NINB 
fx x + -l~y--^-z 
N, Nk N, 

(3.12) 

where the dimensionless direction cosines associated with nr are 

ur=ut+2NINB f, 
N, 

(3.13) 

1 v=vi-2NINBr= 

and 

(3.14) 
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w.=w,+2NINB4h. (3.15) 
Nb 

In terms of the angles ß and 0 shown in Figure 24(a), angles of reflection are 

ßr=cos\vr), (3.16) 

and 

</>r = tan" V^ 
^wry 

(3.17) 

B. COMPUTER SIMULATION RESULTS 

The reflection angle algorithm presented in Section A was incorporated into the 

RRA Algorithm FORTRAN ray tracing program. Seven of the ocean bottom models 

presented in Section B of Chapter II were selected to test the accuracy of computing first 

order partial derivatives and reflection angles for propagating sound rays that reflect off 

the ocean bottom. The computer generated estimates of the partial derivatives and the 

reflection angles are compared with theoretical values. An isospeed ocean was assumed 

in each case in order to facilitate interpretation of the results. 

The seven ocean bottom models employed were: 

(1) Flat ocean bottom with evenly spaced data, as presented in Figure 2 

(2) Planar ocean bottom sloping downward in the z direction only, with no 

variation in the x direction, using Wx = 0 and Wz = 1, with evenly spaced 

data, as presented in Figure 11 

(3) Planar ocean bottom sloping upward in both the x and z directions with evenly 

spaced data, as presented in Figure 4 

(4) Planar ocean bottom sloping upward in the z direction only, with no variation 

in the x direction, using Wx = 0 and Wz = 1, with evenly spaced data, as 
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presented in Figure 8 

(5) Planar ocean bottom sloping upward in the z direction only, with no variation 

in the x direction, using Wx = 0 and Wz = 1, with unevenly spaced data, as 

presented in Figure 9 

(6) Rolling bottom with evenly spaced data, as presented in Figure 19 

(7) Flat ocean bottom with evenly spaced data corrupted by a zero-mean random 

gaussian noise added to each data point, as presented in Figure 16(a) 

In Figures 25 through 31, one ray is launched that propagates in the cross-range 

and down-range directions, with several reflections off the ocean bottom models. The ray 

is launched from an initial (x,y,z) coordinate of (0,v0,0), and initial launch angles ßQ 

and 0O. Each plot shows the propagating ray's path, a projection of the ray path onto the 

ocean bottom, and a projection of the ray path onto the ocean surface. Each plot contains 

a legend with the following information: 

(1) 'CASE:', a brief description of each test case 

(2) 'Y0:\ the launch depth, v0, in meters 

(3) 'DLTS:', the arc length step size, As, in meters, used in the Recursive Ray 

Acoustics (RRA) algorithm 

(4) 'BETAO:', the initial launch angle, /?„, in degrees 

(5) 'PHIO:', the initial launch angle, 0O, in degrees 

For each of the seven test cases, a table of data accompanies each figure. The table 

compares computer simulation results and theoretical results for the bottom reflections. 

The theoretical values of the partial derivatives of the ocean bottom depth with respect to 

cross-range and down-range at the point of incidence, —-—-— and —-—-—, are found 
ck oz 

by taking the partial derivatives of the exact equations that were used to generate the 

discrete data for each test case. The theoretical values for the angles of reflection off the 

ocean bottom are computed using ———, ——-—, and the angles of the incident 
ck dz 
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ray/?, and (/>,. These values are applied to Equations (3.7) to (3.17) to compute ßr and 

</>r.  The estimated partial derivatives of the ocean bottom depth with respect to cross- 

range and down-range at the point of incidence,     *    '— and —b—1—, are computed 
ax, dz 

in the RRA algorithm using the central differencing algorithm of Equations (3.1) and 

(3.2). The estimated angles of reflection for a ray reflected off the ocean bottom 

computed in the RRA algorithm are listed as ßr and <ßr. 

Figure 25 shows a ray propagating and reflecting off the flat ocean bottom 

depicted in Figure 2. The exact fit of the ocean bottom model to the discrete bathymetric 

data results in accurate partial derivatives of the ocean bottom depth with respect to cross- 

range and down-range. For all six of the ocean bottom reflections shown in Figure 25, 

the central differencing algorithm of Equations (3.1) and (3.2) returns values of 

&b(x*z) _ &b(x>z) _ -0.663172 x 10"12 in the computer simulation. These values are a 
at dz 

good double-precision computer approximation of the actual slope of zero, that is, 

^»(x'z) = #*(*'z) _ o.   Table 1 shows that the computer simulation results for the 
ax dz 

angles of propagation (in degrees) of the reflected ray are extremely accurate. 

BOUNCE ßr ßr % Error *, *. % Error 

1 135.000 135.000 0.00 65.000 65.000 0.00 

2 135.000 135.000 0.00 65.000 65.000 0.00 

3 135.000 135.000 0.00 65.000 65.000 0.00 

4 135.000 135.000 0.00 65.000 65.000 0.00 

5 135.000 135.000 0.00 65.000 65.000 0.00 

6 135.000 135.000 0.00 65.000 65.000 0.00 

Table 1. Angles of reflection off a flat ocean bottom with evenly spaced bathymetric data. 
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Figure 25.  A sound ray propagating and reflecting off a flat ocean 
bottom with evenly spaced bathymetric data. 
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Figure 26 shows a ray propagating and reflecting off a planar ocean bottom 

sloping downward in the z direction only, with no variation in the x direction, as depicted 

in Figure 11. The value of the actual slope of the discrete bathymetric data with respect 

to down-range is = — = 0.05.  The first order partial derivative calculated by 
^20 

the RRA algorithm for each bottom reflection is exactly equal to the slope of the discrete 

data, that is,     * = 0.05. The value of the actual slope of the discrete bathymetric 
ck 

data with respect to cross-range is '— = 0.   The first order partial derivative 
dx 

calculated by the RRA algorithm for each bottom reflection is exactly equal to the slope 

of the discrete data, that is, ^       = 0, due to the weighting term Wx = 0.  Table 2 
dx, 

shows that the double-precision computer simulation results for the angles of propagation 

of the reflected ray are extremely accurate. Note that although the ray is launched with an 

initial launch angle ^0 equal to 40 degrees, the ray reflections off the downward sloping 

plane cause the overall ray path to bend such that <f>r approaches 90 degrees. 

BOUNCE A A % Error *, I % Error 

1 146.062 146.062 0.00 46.681 46.681 0.00 

2 141.720 141.720 0.00 51.810 51.810 0.00 

3 137.097 137.097 0.00 55.761 55.761 0.00 

4 132.277 132.277 0.00 58.824 58.824 0.00 

5 127.316 127.316 0.00 61.210 61.210 0.00 

6 122.253 122.253 0.00 63.070 63.070 0.00 

Table 2. Angles of reflection off a planar ocean bottom sloping downward 
in the z direction only, with no variation in the x direction. 
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Figure 26.  A sound ray propagating and reflecting off a planar ocean bottom sloping 
downward in the z direction, with no variation in the x direction, with evenly spaced 

bathymetric data. 
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Figure 27 shows a ray propagating and reflecting off a planar ocean bottom 

sloping upward in both the x and z directions, as presented in Figure 4. The exact fit of 

the ocean bottom model to the discrete bathymetric data results in accurate partial 

derivatives of the ocean bottom depth with respect to cross-range and down-range. For 

all six of the ocean bottom reflections shown in Figure 27, the partial derivatives 

$b(x,z)    <$b(x,z) 
produced by the RRA algorithm are = -0.00625, which are exactly 

dx dz 

equal to the partial derivatives of the discrete bathymetric data. Table 3 shows that the 

angles of propagation of the reflected rays produced by the RRA algorithm are equal to 

their theoretical values. 

BOUNCE A k % Error *, *, % Error 

1 100.978 100.978 0.00 60.049 60.049 0.00 

2 101.956 101.956 0.00 60.102 60.102 0.00 

3 102.934 102.934 0.00 60.160 60.160 0.00 

4 103.911 103.911 0.00 60.224 60.224 0.00 

5 104.888 104.888 0.00 60.292 60.292 0.00 

6 105.865 105.865 0.00 60.366 60.366 0.00 

Table 3. Angles of reflection off a planar ocean bottom sloping upward 
in both the x said z directions. 

Figure 28 shows a ray propagating and reflecting off a shoaling ocean bottom as 

depicted in Figure 8. The first order partial derivative of the ocean bottom depth with 

respect to down-range calculated by the RRA algorithm for each bottom reflection in 

double precision accuracy is '    = -0.166667, which is equal to the exact slope of 

the discrete data, that is, 
dz 6 

Table 4 shows that the double-precision 
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Figure 27.  A sound ray propagating and reflecting off a planar ocean bottom sloping 
upward in both the x and z directions, with evenly spaced bathymetric data. 
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Figure 28.  A sound ray propagating and reflecting off a planar ocean bottom sloping 
upward in the z direction, with no variation in the x direction, with evenly spaced 

bathymetric data. 
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computer simulation results for the angles of propagation of the reflected ray are 

extremely accurate. 

BOUNCE A A % Error *r I % Error 

1 144.849 144.849 0.00 61.881 61.881 0.00 

2 159.740 159.740 0.00 38.411 38.411 0.00 

3 163.176 163.176 0.00 -20.368 -20.368 0.00 

4 150.783 150.783 0.00 -56.227 -56.227 0.00 

5 133.949 133.949 0.00 -67.859 -67.859 0.00 

Table 4. Angles of reflection off a planar ocean bottom sloping upward in the z direction 
only, with no variation in the x direction, with evenly spaced bathymetric data. 

Figure 29 shows a ray propagating and reflecting off a shoaling ocean bottom 

with the discrete bathymetric data entered at unevenly spaced intervals as depicted in 

Figure 9. Table 5 shows that small errors are introduced by rounding off the input 

bathymetric data to five significant digits. The ocean bottom surface fit produced for the 

test case shown in Figures 9 and 29 is 7th-order and not Ist-order due to the round off 

error introduced in the discrete bathymetric data. Overall, the effect on ray propagation is 

small. After propagating the sound ray for a path length of over 4 kilometers, the 

BOUNCE A A % Error t. I % Error 

1 144.849 144.855 0.004 61.881 61.877 0.006 

2 159.740 159.730 0.006 38.411 38.442 0.081 

3 163.176 163.187 0.007 -20.368 -20.270 0.481 

4 150.783 150.858 0.050 -56.227 -56.137 0.160 

5 133.949 134.026 0.057 -67.859 -67.829 0.044 

Table 5. Angles of reflection off a planar ocean bottom sloping upward in the z direction 
only, with no variation in the x direction, with unevenly spaced bathymetric data. 
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Figure 29.  A sound ray propagating and reflecting off a planar ocean bottom sloping 
upward in the z direction, with no variation in the x direction, with unevenly spaced 

bathymetric data. 
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coordinate (x,y,z) of the point of incidence of the fifth bounce in Figure 29 has been 

displaced 2.449 meters as compared to the coordinate (x,y,z) of the point of incidence of 

the fifth bounce of the sound ray propagated in Figure 28. Table 6 shows the theoretical 

partial derivatives of the ocean bottom depth with respect to down-range and cross-range, 

and the estimated partial derivatives computed using the central differencing algorithm at 

each bottom reflection location. 

BOUNCE <&(*»*) 
& 

% Error 

1 -0.16666667 -0.16672578 0.035 

2 -0.16666667 -0.16647425 0.115 

3 -0.16666667 -0.16651536 0.091 

4 -0.16666667 -0.16614634 0.312 

5 -0.16666667 -0.16672751 0.037 

Table 6. Partial derivative of ocean bottom depth with respect to down range for 
reflections off a planar ocean bottom sloping upward in the z direction only, with no 
variation in the JC direction, with unevenly spaced bathymetric data. 

Figure 30 shows a ray propagating and reflecting off a rolling or oscillating 

bottom with evenly spaced bathymetric data, as presented in Figure 19. Although the 

ocean bottom surface fit is 7th-otder, the ocean bottom model closely approximates the 

discrete bathymetric data generated by Equation (2.32), which is 3rd-ordet. Table 7 

shows that the reflection angles produced by the RRA algorithm are accurate estimates of 

the theoretical values. Table 8 compares the estimated partial derivatives produced by the 

RRA algorithm and the partial derivatives obtained by differentiating Equation (2.32). 

The test cases shown in Figures 28 and 30 are good examples of the insight into 

ray propagation provided by using a two-dimensional ocean bottom model in the RRA 

ray tracing program. Reflections that turn the ray causing a cross-range displacement can 

be easily computed and plotted. It is important to note that the modeling of ray 
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Figure 30.  A sound ray propagating and reflecting off a rolling or oscillating ocean 
bottom with evenly spaced bathymetric data. 
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BOUNCE ßr k % Error *, I % Error 

1 115.278 115.278 0.000 71.836 71.836 0.000 

2 108.991 108.991 0.000 70.577 70.577 0.000 

3 145.242 145.255 0.009 90.770 90.747 0.025 

4 145.067 145.106 0.027 179.529 179.473 0.031 

5 108.882 108.889 0.007 -160.551 -160.560 0.005 

Table 7. Angles of reflection off a rolling ocean bottom with unevenly spaced 
bathymetric data. 

BOUNCE $>b(x,z) 
& 

$>b(x,z) 
3c 

% Error 4>b(x,z) 
a 

$b(x,z) % Error 

1 -0.07069 -0.07069 0.001 -0.07069 -0.07069 0.001 

2 0.04327 0.04327 0.000 0.04327 0.04327 0.000 

3 -0.28082 -0.28059 0.082 -0.28082 -0.28059 0.082 

4 -0.34430 -0.34388 0.345 -0.34430 -0.34388 0.345 

5 -0.28010 -0.27988 0.079 -0.28010 -0.27988 0.079 

Table 8. Partial derivatives of ocean bottom depth with respect to cross range and down 
range for reflections off a rolling ocean bottom with unevenly spaced bathymetric data. 

propagation is intended to be an exact representation of ray propagation in the ocean. 

However, the implementation of mathematical algorithms in a computer simulation 

requires approximations to be made. The effort is to model the ocean as accurately as 

possible in order to simulate the ocean. The algorithms used in a computer model 

designed for real-time ray tracing must be accurate and as fast and as simple as possible 

to provide fast calculations. The two-dimensional ocean bottom model produced by the 

orthogonal function expansion provides these features. 
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Finally, Figure 31 demonstrates the ability of the orthogonal function expansion to 

smooth through ocean bottom roughness or noisy input bathymetric data. Figure 31 

shows a ray propagating and reflecting off a flat ocean bottom with a zero-mean random 

gaussian noise added to the discrete bathymetric data as depicted in Figure 16. With a 

standard deviation of the noise at 1% of the ocean bottom depth, the ocean bottom model 

provides a smooth fit through the noise. The data in Table 9 is provided only to illustrate 

the smoothing effect of the orthogonal function expansion, and not to validate the 

reflection angle calculations. Table 9 presents data that compares the theoretical angles 

of reflection of the propagating ray reflecting off the ocean bottom for the case presented 

in Figure 25 (no noise) versus the estimated angles of reflection produced by the smooth 

fit in Figure 31 (with noise). Table 9 reports the discrepancies as a '% difference' since 

BOUNCE fir 

Fig. 25 

fir 

Fig. 31 

% 

Difference Fig. 25 Fig. 31 

% 

Difference 

1 135.000 134.568 0.32 65.000 64.845 0.24 

2 135.000 134.786 0.16 65.000 64.922 0.12 

3 135.000 134.790 0.16 65.000 64.924 0.12 

4 135.000 134.854 0.11 65.000 64.947 0.08 

5 135.000 134.550 0.33 65.000 64.838 0.25 

6 135.000 134.295 0.52 65.000 64.748 0.39 

Table 9. Angles of reflection off a flat ocean bottom with rough or noisy bathymetric 
data (Fig.25) versus a flat ocean bottom with no irregularities (Fig.31). 

the difference is due to ocean bottom roughness or noisy data. The average '% 

difference' between /?, and ßr is 0.27%, and the average '% difference' between $r 

and *<j>r is 0.20%. The error produced by successive reflections is cumulative. After 

propagating the ray over 14 kilometers, the largest difference introduced by the ocean 
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Figure 31.  A sound ray propagating and reflecting off a flat ocean bottom with evenly 
spaced bathymetric data corrupted by a zero-mean random gaussian noise added to the 

depth of each data point. 
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bottom roughness or noise is a 0.52% difference for the angle of reflection, ßr, off the 

rough ocean bottom of Figure 31 as compared to the flat ocean bottom of Figure 25. The 

roughness or noise is effectively smoothed by the orthogonal function expansion. 
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IV. TWO-DIMENSIONAL ORTHOGONAL FUNCTION 
EXPANSIONS OF SOUND-SPEED DATA 

A. ORTHOGONAL FUNCTION EXPANSION AND THE BASIS FUNCTIONS 

Sound speed data in the ocean is typically measured as a function of depth at a 

particular geographic location. In terms of the Cartesian coordinate system presented in 

Chapters II and III, sound speed is typically measured at a fixed cross-range and down- 

range location (x,z), and the sound speed is a function of depth (y) only. This type of 

sound-speed measurement is called a sound-speed profile (SSP). The sound-speed 

measurements used in this research as test cases are discrete, and the discrete 

measurements may be taken at unevenly spaced depths. The one-dimensional orthogonal 

function expansion discussed in [Ref. 2] was demonstrated to be an effective method to 

model sound speed when it is a function of one variable, that is, depth. For a ray 

propagated down-range using the RRA algorithm, the sound-speed model developed with 

the one-dimensional orthogonal function expansion does not vary as a function of down- 

range. The one-dimensional orthogonal function expansion models sound speed as a 

function of depth only. Multiple sound-speed profiles can be used to model the speed of 

sound as a function of depth in areas (or zones) of the ocean. As the sound ray passes 

from one zone to another zone, the orthogonal function expansion of the next set of 

discrete sound-speed profile data is computed. The technique of zones is presented in 

[Ref. 2], and is illustrated in Figure 32(a). A technique is needed that will use multiple 

sound-speed profiles taken at different down-range locations to compute the speed of 

sound as a function of both depth and down-range. The two-dimensional orthogonal 

function expansion technique can be used to compute sound speed as a function of both 

depth and down-range given a rectangular matrix of discrete sound-speed data. The 

rectangular matrix of data is made up of multiple discrete sound-speed profiles taken at 

different down-range locations. The rectangular matrix of discrete sound-speed data is 

illustrated in Figure 32(b). 
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Figure 32. (a) Speed of sound as a function of depth (y) only, employed in 
areas (zones) of the ocean, (b) Rectangular matrix of discrete sound-speed 

data from multiple sound-speed profiles. 
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1. Definition of the Two-Dimensional Orthogonal Function Expansion 

The technique being employed in this chapter to model sound speed as a function 

of depth and down-range is the same mathematical technique that was presented in 

Chapter II to model ocean bathymetry as a function of cross-range and down-range. The 

two-dimensional orthogonal function expansion used to fit a smooth surface to a 

rectangular matrix of sound-speed data as a function of depth and down-range is given by 

c(y,z) = ^c„<pc(y,z), (4.1) 
n=0 

where the coefficient 

c,,=(cm(y9>zv)>Pc.(yvzv))> 

= ZIC»^'Z?K^'Z*)'   n = 0,l,-,Nc , (4.2) 

represents the inner product of the measured discrete sound-speed data cm(yv,z9), for 

/ = 1,2,...,Mc      and    j = \,2,...,Mc , with the set of orthonormal basis functions 

<pc (y,z), n = Q,\,...,NC , evaluated at the discrete depth00and down-range(z§) values 

corresponding to the discrete sound-speed data. The order of the expansion is represented 

by Nc . The discrete data must be entered in a matrix, where Mc   is the total number of 

depth rows and Mc    is the total number of down-range columns.   The matrix is, in 

general, rectangular, not square, and the data is, in general, unevenly spaced in both the v 

and z directions. 

2. The Basis Functions from the Generating Functions 

As in Chapter II, the set of orthonormal basis functions <pCn (y,z), n = 0,1,..., Nc, 

were determined by using the Gram-Schmidt procedure [Ref. 3] on the set of generating 
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functions fn(y,z) = (y + z)n, n = 0,1,..., iVe. The generating function chosen is of the 

same form as in Chapter II. The general equation of the Gram-Schmidt 

Orthogonalization Procedure is given by 

<Pc„ CM) = f„(y>z) - 7—7——7—k<Pc0 M-- 

(<pCni(y,z),<pCtix(y,z)) 

The Gram-Schmidt procedure to find the basis functions, (pCn, for n = 0,1,...,Nc, is the 

same as the procedure detailed in Section A of Chapter II, and it will not be repeated here. 

As a means of comparison to the derivation shown in Chapter II, the final equations for 

the first three basis functions are listed below: 

The Oth-ordeT basis function is given by 

*«,(**) = ! • (4-4) 

The 7sf-order basis function is given by 

<PCl(y,z) = y+z-wl0. (4.5) 

The 2nd-order basis function is given by 

<PC2M = 0> + z? ~W2»-W2l[y + z-Wl0]. (4.6) 

The use of the two-dimensional orthogonal function expansion to model sound 

speed as a function of depth and down-range gives similar results as the model of 
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bathymetric data presented in Chapter II. The data may be unevenly spaced. As in 

Chapter II, where Nb = 7 is the maximum order fit, the maximum order sound-speed fit 

is Nc=l. Noise in the input discrete sound-speed data does not affect the overall fit. 

Also, the mean-squared error (MSE) is computed for Nc = 0,1,...,7. The value of JVC 

that produces the lowest mean-squared error is used to reconstruct the sound-speed data. 

B. COMPUTER SIMULATION RESULTS OF SOUND-SPEED FITS 

The two-dimensional orthogonal function expansion technique to model sound- 

speed data was implemented in the RRA Algorithm FORTRAN ray tracing program. 

The results of various test cases are presented graphically to demonstrate both the 

successes and the shortcomings of this method of modeling discrete sound-speed data. 

The discrete sound-speed data is made up from three sound-speed profiles (sound-speed 

versus depth) taken at three different down-range locations. The graphs, presented in 

Figures 33 to 41, show the discrete sound-speed data points as large black dots (•). The 

estimated fit to the discrete data computed by the orthogonal function expansion is 

presented as a mesh of lines to represent the two-dimensional, continuous surface. 

The technique of using a two-dimensional orthogonal function expansion to 

provide a continuous surface fit to discrete data is the same technique that was tested in 

Chapter II. The general conclusions and shortcomings presented in Chapter II apply in 

this chapter. Even with the shortcomings discussed in Chapter II, the testing of this 

technique to fit sound-speed data will validate the FORTRAN subroutines that compute 

the two-dimensional orthogonal function expansion of sound-speed data in the RRA 

algorithm computer program. The test cases will also provide specific conclusions and 

shortcomings of this technique when it is applied to fit discrete sound-speed data. 

Each plot contains a legend with the following information: 

(1) 'CASE:', a description of the test case 

(2) 'SIGMAC:', the value of the standard deviation, ac, of a randomly 
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generated zero-mean gaussian noise added to each sound-speed data point 

(3) the order of the fit, Nc , based on the minimum mean-squared error 

criterion 

(4) 'MSEO:' to 'MSE7:', the mean-squared error for Nc = 0,1,2,...,7 

Figures 33 and 34 demonstrate the fit of the most basic test case, a constant speed 

of sound. The exact equation used to generate the 6x3 rectangular matrix of data for 

Figures 33 and 34 is given by 

c(v,z) = 1500. (4.7) 

In both test cases, the fit is an exact Oth-order fit with the orthogonal function expansion 

returning a value of 1500 m/s for any combination of depth and down-range. Figure 34 

shows that the data may be entered at unevenly spaced coordinates without affecting the 

fit. 

Figures 35, 36, and 37 demonstrate exact Ist-order fits. The exact equation used to 

generate the 6 x 3 rectangular matrices of data for Figures 35,36, and 37 is given by 

c(y,z) = 1490 + 0.02 y, (4.8) 

which represents sound speed that is linearly increasing as a function of depth. Figure 35 

reveals the same shortcoming that was found with the Ist-order bathymetric fits presented 

in Chapter II. The corner of the surface fit at the maximum depth and minimum down- 

range location ( v = 1000 m, z = 0.0 km) is below the discrete sound-speed data points; the 

corner of the surface fit at the minimum depth and maximum down-range location 

(y = 0.0 m, z = 1.0 km) is above the discrete sound-speed data points. The fitted surface 

approximates a Ist-order planar surface that slopes upward equally in both the v and z 

directions.   Therefore, the fitted plane is below half of the discrete sound-speed data 
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SOUND SPEED 

4.098x10" 

CASE:   CONSTANT SOUND SPEED WITH EVENLY SPACED DATA 
SIGMAC:   O.OM        OTH-QRDER MMSE SURFACE FIT 
MSEO:   4.098^10"^  MSE2:   4.098x10-*  MSE4:   4.098x10     MSE6: 
MSEl:   4.098X10"8  MSE3:   4.098x10"  MSE5:   4.098x10^  MSE7:   4.098x10 

Figure 33.   Constant sound-speed with evenly spaced data. 
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SOUND SPEED 

CASE:   CONSTANT SOUND SPEED WITH UNEVENLY SPACED DATA 
SIGMAC:   0.0M        OTH-ORDER MMSE SURFACE FIT 
MSEO:   4.098*10"°  MSE2:   4.098*10""  MSE4:   4.098*10^  MSE6:   4.098*10 
MSE1:   4.098*10"°  MSE3:   4.098*10^  MSE5:   4.098*10~6  MSE7:   4.098*10 

Figure 34.   Constant sound-speed with unevenly spaced data. 
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SOUND SPEED 

CASE:   SS LINEARLY INCREASING, EVENLY SPACED DATA NO WT 
SIGMRC:   O.OM        7TH-0RDER MMSE SURFACE FIT 
MSEO:   8.400*102   MSE2:   4.941xl02   MSE4:   4.827*102   MSE6:   4.825x10 
MSE1:   4.941K102   MSE3:   4.827xl02   MSE5:   4.825*102   MSE7:   4.663x10 

Figure 35.   Sound-speed that is linearly increasing as a function of depth, 
with no variation in the down-range direction, modeled without 

weighting x and z separately, with evenly spaced data. 
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SOUND SPEED 

CASE:   SS LINEARLY  INCREASING,  EVENLY SPACED DATA WITH WT 
SIGMAC:   O.OM IST-ORDER MMSE SURFACE FIT 
MSEO:   8.400*10*   MSE2:   5.215x10"°  MSE4:   5.215x10^  MSE6:   5.215x10 
MSE1:   5.215x10"*  MSE3:   5.215x10"°  MSE5:   5.215*10^  MSE7:   5.215x10 

Figure 36.   Sound-speed that is linearly increasing as a function of depth, 
with no variation in the down-range direction, using Wy = 1 and W. = 0, 

with evenly spaced data. 
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SOUND SPEED 

CASE:   SS LINEARLY INCREASING, WITH UNEVENLY SPACED DATA 
SIGMAC:   0.0 M        7TH-0RDER MMSE SURFACE FIT 
MSEO:   7.895x10*   MSE2:   1.321xl0"2  MSE4:   1.311xlQ"2  MSE6:   1.275x10 
MSEl:   1.370*10"2  MSE3=   1.317xl0~2  MSE5:   1.290*10~2  MSE7:   1.157x10 

Figure 37.   Sound-speed that is linearly increasing as a function of depth, 
with no variation in the down-range direction, using Wy = 1 and W. = 0, 

with unevenly spaced data. 
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points in the lower half of Figure 35, and above half of the discrete sound-speed data 

points in the upper half of Figure 35. The best fit is limited in its accuracy due to the fact 

that v and z are summed in every term of the orthogonal function expansion. As in 

Chapter II, an independent weighting with respect toy and an independent weighting with 

respect to z need to be added to the orthogonal function expansion to correct this 

shortcoming. With the addition of weighting factors, the orthogonal function expansion 

becomes 

c(y,z) = fdcn<pCn(Wyy,Wzz), (4.9) 
71=0 

where Wy and Wz are weighting factors to introduce independence in>> andz. 

Figure 36 presents the same test case presented in Figure 35, except that the 

weighting factors, Wy and Wz, were added as shown in Equation (4.9) with Wy = 1 and 

W. = 0. The result is an exact lst-order fit. Figure 37 presents the same test case with 

the discrete sound-speed data entered at unevenly spaced locations. The fit determined by 

the orthogonal function expansion is 7/A-order due to using only five significant digits for 

the discrete sound-speed data. The overall fit is lst-order; the higher order terms of the 

orthogonal function expansion only affect the lower significant digits of the estimated 

value of sound speed. 

Figures 38, 39, and 40 present a test case with discrete sound-speed data 

generated by the exact equation given by 

c(v,z) = 1525-0.05 v, (4.10) 

which represents sound-speed that is linearly decreasing as a function of depth. In Figure 

38, no weighting is applied, and the orthogonal function expansion produces a poor fit. 

In Figures 39 and 40, the weighting factors, Wy and Wz, were added as shown in 
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SOUND SPEED 

CASE:   SS LINEARLY DECREASING, EVENLY SPACED DATA NO WT 
SIGMAC:   0.0M        7TH-0RDER MMSE SURFACE FIT 
MSEO:   5.250*103   MSE2:   3.088*103   MSE4:   3.017xl03   MSE6:   3.016x10 
MSEls   3.088*103   MSE3:   3.017*103   MSE5:   3.016*103   MSE7:   2.914*103 

Figure 38.   Sound-speed that is linearly decreasing as a function of depth, 
with no variation in the down-range direction, modeled without 

weighting x and z separately, with evenly spaced data. 
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SOUND SPEED 

CASE:   SS LINEARLY DECREASING,  EVENLY SPACED DATA WITH WT 
SIGMAC:   0.0M IST-ORDER MMSE SURFACE FIT 
MSEO:   5.250xl03   MSE2=   7.078x10"°  MSE4:   7.078x10"*  MSE6 =   7.078x10"* 
MSE1:   7.078X10"9   MSE3:   7.078x10"*   MSE5:   7.078x10"*   MSE7:   7.078xl0~8 

Figure 39.   Sound-speed that is linearly decreasing as a function of depth, 
with no variation in the down-range direction, using Wy = 1 and W. = 0, 

with evenly spaced data. 



SOUND SPEED 

CASE:   SS LINEARLY DECREASING, WITH UNEVENLY SPACED DATA 
SIGMAC:   0.0M        7TH-0RDER MMSE SURFACE FIT 
MSEO:   5.120K103   MSE2:   7.723*10*  MSE4:   6.346x10'   MSES:   6.023xl0_3 

MSE1:   8.196*10~3  MSE3:   7.668*10-3  MSE5:   6.024xl0"3  MSE7:   6.013x10 

Figure 40.   Sound-speed that is linearly decreasing as a function of depth, 
with no variation in the down-range direction, using Wy = 1 and W. = 0, 

with unevenly spaced data. 
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Equation (4.9) with W = 1 and W: = 0.   An exact Ist-order fit results in Figure 39. 

Figure 40 demonstrates that the discrete sound-speed data may be unevenly spaced 

without affecting the overall fit. 

Figure 41 demonstrates a more complicated test case. The discrete sound-speed 

data used in this test case represents three different sound-speed profiles taken at three 

different down-range locations. The discrete data for the constant sound-speed profile at 

z = 0.0 km is generated by Equation (4.7). The discrete data for the linearly decreasing 

sound-speed profile at z = 03 km is generated by Equation (4.10). The discrete data for 

the parabolic sound-speed profile at z = 1.0 km is generated by the exact equation given 

by 

c(y,z) = 1490 + 0.000 l(y-500y. (4.11) 

The three sound-speed profiles form a 6x3 rectangular matrix of discrete sound-speed 

data. The result from the orthogonal function expansion is a smooth surface fit that 

attempts to transition from the constant sound-speed profile to the linearly decreasing 

sound-speed profile to the parabolic sound-speed profile. The smooth transition is 

obtained. However, at the down-range locations where the sound-speed profiles were 

taken, the characteristics of the speed of sound as a function of depth have been distorted. 

The distortion can be seen more clearly by examining a two-dimensional plot of the fitted 

speed of sound versus depth taken at the fixed down-range locations of the three sound- 

speed profiles. 

Figures 42, 43, and 44 show two-dimensional plots of the speed of sound versus 

depth for the test case presented in Figure 41. The plots show the discrete sound-speed 

data points as large black dots (•). The estimated fit to the discrete data computed by the 

two-dimensional orthogonal function expansion is presented as a continuous curve. 

Significant distortion resulted. 
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SOUND SPEED 

.o 

CASE:   VARYING SOUND SPEED, CONSTANT-LINEAR-PflRABOLIC 
SIGMAC:   O.OM        7TH-ORDER MMSE SURFACE FIT 
MSEO:   2.358*10*    hSE2:   2.157*103    MSE4:   9.409*102    MSE6 
MSE1:   2.182*103   MSE3:   1.109*103   MSE5 

8.813*102 

8.929xl02   MSE7:   8.457*102 

Figure 41.   Sound-speed that varies in the down-range direction, with the discrete 
sound-speed data constant as a function of depth at z = 0.0 km, linearly decreasing as a 

function of depth at z = 05 km, and parabolic as a function of depth at z = 1.0 km, 
modeled without weighting x and z separately, with evenly spaced data. 
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Figure 42.   Sound-speed versus depth at z = 0.0 km for the test case shown in Figure 41, 
with the discrete sound-speed data constant as a function of depth at z = 0.0 km, modeled 

without weighting x and z separately, with evenly spaced data. 
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Figure 43.   Sound-speed versus depth at z = Of km for the test case shown in Figure 41, 
with the discrete sound-speed data linearly decreasing as a function of depth at 

z = Of km, modeled without weighting x and z separately, with evenly spaced data. 
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Figure 44.   Sound-speed versus depth at z = 1.0 km for the test case shown in Figure 41, 
with the discrete sound-speed data parabolic as a function of depth at z = 1.0 km, modeled 

without weighting x and z separately, with evenly spaced data. 
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The distortion of the fitted sound-speed as compared to the discrete sound-speed 

profiles is due to the smoothing effect of the orthogonal function expansion. If the 

orthogonal function expansion was computed to a higher order using Nc>7, then the 

sound-speed surface fit would more closely match the changes in the discrete sound- 

speed profiles. The distortion is also a result of the set of generating functions used. As 

discussed in Chapter II, the surface fits have a constant value for the estimated sound 

speed across lines of contour given by 

y + z = C, (4.12) 

where C is a positive constant. Therefore, the surface fits have no curvature along these 

contours. The amount of distortion for different sound-speed profiles will depend on how 

well the rectangular matrix of discrete sound-speed data matches the form of the 

generating functions. For a given set of data, the fit that is obtained may be acceptable, 

but the technique is not versatile enough to provide acceptable fits in all cases. 

As in Chapter II, the method of orthogonal function expansion to fit two- 

dimensional, discrete data provides a starting point for the use of this technique to 

compute a continuous model of the speed of sound as a function of depth and down- 

range. The orthogonal function expansion needs more variability in the maximum order 

fit that is selected, Nc. The technique could be improved by using a different set of 

generating functions that will not return constant values for the speed of sound across 

lines of contour given by Equation (4.12). For two-dimensional sound-speed fits, the use 

of this technique has an additional shortcoming. For the sound-speed profiles used as 

input data, their basic shape as a function of depth may be distorted. A better and simpler 

technique may be to use a one-dimensional orthogonal function expansion to fit each 

sound-speed profile separately, and then average or interpolate between the nearest one- 

dimensional sound-speed fits. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This thesis had two primary goals. First, to derive and test the two-dimensional 

orthogonal function expansions of ocean bathymetric and sound-speed data. This 

technique provides a continuous mathematical model, from unevenly spaced discrete 

input data, of bathymetry as a function of cross-range and down-range, and the speed of 

sound as a function of depth and down-range. The second goal was to implement the 

expansions in the Recursive Ray Acoustics (RRA) Algorithm FORTRAN program to 

evaluate the successes and shortcomings of this technique to model the ocean bottom and 

the speed of sound. In order to implement the technique as the ocean bottom model in the 

RRA Algorithm, a method of computing accurate angles of reflection also had to be 

developed. The orthogonal function expansion has many positive features. It takes 

discrete input data that may be unevenly spaced, and provides a fit to the discrete data that 

smoothes through noise or rapid variations in the data. The result is a continuous two- 

dimensional model of the discrete data. The major shortcoming is that the technique is 

limited by the choice of the set of generating functions used. Also, the maximum order 

fit that is implemented has been limited to seventh order. The choices for the set of 

generating functions and the maximum order fit were based upon previous research with 

the one-dimensional orthogonal function expansion [Ref. 2]. 

The effort to provide a more sophisticated one-dimensional ocean bottom model 

for the RRA Algorithm, other than a flat ocean bottom, began in 1991 with the use of 

Spatial Fourier Series [Ref. 4]. The technique met with limited success. The one- 

dimensional orthogonal function expansion was developed and presented in 1994 [Ref. 

2]. The one-dimensional orthogonal function expansion was successful, and the 

technique was used to model both bathymetric and sound-speed data in the RRA 

Algorithm. The two-dimensional orthogonal function expansion may yet prove to be a 

viable tool in modeling both ocean bathymetric data and sound-speed data, but its 

immediate utility, based on the analysis conducted, is limited. 

97 



It is recommended that future research apply higher-order fits and test generating 

functions that will correct the shortcomings produced by the set of generating functions 

used in this analysis. A possible alternative technique could be a two-dimensional 

orthogonal function expansion that is based on the generating functions of the one- 

dimensional case [Ref. 9]. The form of the orthogonal function expansion used to fit a 

rectangular matrix of discrete ocean bathymetric data as a function of cross-range and 

down-range would then be given by 

N„   Nb 

A(*>*) = IL^(*K(*)> 0-1) 
n=0 m=0 

where (pK (x), n = 0,1,..., Nb, and y/bn (z), m = 0,1,..., Nb, are the orthogonal functions 

obtained by applying the Gram-Schmidt Orthogonalization Procedure to the generating 

functions given by 

f„(x) = x",   n = 0X...,Nb, (5.2) 

to find (pb (x), and 

gm(z) = zm,   m = 0,l,...,Nb, (5.3) 

to find ybm(z). The coefficients bnm, « = 0,1,...,JVA and m = Q,\,...,Nb, would be 

obtained by computing the inner product of the measured discrete ocean bathymetric data 

with the orthonormal basis functions^(x)t^(z).   This technique would provide a 

greater degree of freedom to fit the surfaces with more independence in x and z. For a 

seventh-order    fit,     Nb=l,    this    technique    would    produce    64    coefficients 
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(b00,bol,...,b76,b71) as opposed to the eight coefficients developed in the.technique 

presented in Chapter II. 

The ray trace plots presented in Chapter III provide insight into the complexity of 

ray propagation in the ocean. The study of sound propagation involving multiple ocean 

bottom reflections requires a good two-dimensional ocean bottom model. With the 

continued interest of the United States Navy in understanding the acoustic environment in 

the littorals, more advanced study in this technique of mathematical modeling is 

warranted. 
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